On the spectral radius of a random matrix: An upper bound without fourth moment
نویسندگان
چکیده
منابع مشابه
An Upper Bound on the Spectral Radius of Weighted Graphs
We consider weighted graphs, where the edge weights are positive definite matrices. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. We obtain another upper bound which is sharp on the spectral radius of the adjacency matrix and compare with some known upper bounds with the help of some examples of graphs. We also characterize graphs for which the bound is attained.
متن کاملa study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension
این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.
An upper bound on the Laplacian spectral radius of the signed graphs
In this paper, we established a connection between the Laplacian eigenvalues of a signed graph and those of a mixed graph, gave a new upper bound for the largest Laplacian eigenvalue of a signed graph and characterized the extremal graph whose largest Laplacian eigenvalue achieved the upper bound. In addition, an example showed that the upper bound is the best in known upper bounds for some cases.
متن کاملA sharp upper bound on the spectral radius of weighted graphs
We consider weighted graphs, where the edgeweights are positive definite matrices. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. We obtain an upper bound on the spectral radius of the adjacency matrix and characterize graphs for which the bound is attained. © 2007 Elsevier B.V. All rights reserved.
متن کاملAn Upper Bound on the First Zagreb Index in Trees
In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 2018
ISSN: 0091-1798
DOI: 10.1214/17-aop1228